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Nonlinear waves, patterns and spatio-temporal
chaos in cellular neural networks

By V. PEREZ-MUNUZURI}, A. P. MUNUZURI!, M. GOMEZ-GESTEIRA!,
V. PEREZ-VILLAR', L. PIVKA? AND L. O. CHUA?

LGroup of Nonlinear Physics, Faculty of Physics, University of Santiago de
Compostela, 15706 Santiago de Compostela, Spain
2Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, Berkeley, CA 94720, USA

Spatio-temporal pattern formation occurring in discretely coupled nonlinear dynam-
ical systems has been studied numerically. In this paper, we review the possibilities
of using arrays of discretely coupled nonlinear electronic circuits to study these sys-
tems. Spiral wave initiation and Turing pattern formation are some of the examples.
Sidewall forcing of Turing patterns is shown to be capable of driving the system into
a perfect spatial organization, namely, a rhombic pattern, where no defects occur.
The dynamics of the two layers supporting Turing and Hopf modes, respectively,
is analysed as a function of the coupling strength between them. The competition
between these two modes is shown to increase with the diffusion between layers. As
well, the coexistence of low- and high-dimensional spatio-temporal chaos is shown to
occur in one-dimensional arrays.

1. Introduction-

Systems of discretely coupled cells with reactions and mass, energy or electric charge
transfer often serve as standard models for investigating the phenomena occurring in
the transformation and transport processes in living cells, tissues, neuron networks,
physiological systems and ecosystems, as well as in all forms of chemical, biochemical
and biological reactors and combustion systems (Haken 1983; Glass & Mackey 1988;
Murray 1989; Winfree 1987; Zykov 1987). In the continuous limit, it is possible
to derive a reaction-diffusion type model which exhibits all classical properties of
autowaves (Krinsky 1984).

Autowaves represent a particular class of nonlinear waves, which propagate in
an active excitable media at the expense of the energy stored in the medium. The
term ‘autowaves’ (Grekhova 1981) was coined by R. V. Khorhlov, as an abbreviation
for ‘autonomous waves’, since such waves can propagate without a forcing function.
Autowaves are manifestations of a strongly nonlinear active medium. They are self-
sustained signals which induce a local release of stored energy in an active medium,
and use it to trigger the same process in adjacent regions. Typical examples of
autowaves include the waves of combustion, waves of phase transitions, concentration
waves in chemical reactions (Zaikin & Zhabotinsky 1970; Pérez-Muniuzuri 1991), and
many biological autowave processes (propagation of nerve impulses (Scott 1975),
excitation waves in the cardiac muscle (Allesie et al. 1973), cultures of the slime
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mould Dyctiostelium discoideum (Devreotes et al. 1983), epidemic waves in ecological
communities (Anderson & May 1986), retinae (Bures et al. 1984), spreading waves
in the cerebral cortex (Ermentrout & Cowan 1979), etc. These examples stress the
importance of the autowave phenomena.

During the last few years, a lot of work has been done in the study of discretely
coupled dynamical systems. For example, the coupling between a one-dimensional
array of continuously stirred tank reactors has been used recently to prove the ex-
istence of travelling waves in such a medium (Laplante & Erneux 1992). Classical
examples of discrete systems in nature include the nerves (Scott 1975), or linear ar-
rays of cells connected among them by diffusion. An example in a two-dimensional
medium is the propagation of electric pulses in the cardiac tissue (Allesie et al. 1973)
(composed of cells connected by diffusion with the neighbouring cells). This prop-
agation is responsible for the pumping of blood by the heart. Some anomalies can
appear in their behaviour, such as the anchoring of a wave in an inhomogeneity of
the medium (dead or damaged cell), or the formation of a discontinuous wave front
when a region of the system (a group of cells) is re-excited almost immediately after
the passage of a previous wave through that region (this phenomenon is called vul-
nerability (Spach et al. 1981; Starmer et al. 1992; Gémez-Gesteira et al. 1994)). In
all of these cases the broken wave evolves into a spiral or vortex, which rotates in the
heart imposing a higher frequency that eventually results in a disordered behaviour
where the heart can no longer pump any blood, thereby leading to sudden death.

In recent years, it has become apparent that continuous models cannot account for
all propagation phenomena occurring in nature. For example, biological experiments
on nerve propagation show that a signal can fail to propagate under certain condi-
tions, a situation that cannot occur if the medium is a homogeneous continuum. One
of the most well-known examples is ‘multiple sclerosis’. In this case, travelling wave
propagation fails due to a lack of current needed to stimulate the excitable nerves.
The study of wave propagation in systems of excitable cells is an important aspect of
neurophysiology and cardiophysiology, see for example (Scott 1975). It is often the
case that propagation failure (Keener 1987) leads to failure of these systems, and in
the case of the cardiac action potential, this can be fatal (Cole et al. 1988).

In 1952 A. M. Turing suggested that, under certain conditions, chemicals can react
and diffuse in such a way that it produces a steady state consisting of heterogeneous
spatial patterns of chemical or morphogen concentrations. Turing structures have
been suggested as a possible basis for morphogenesis in large-scale biological systems
(Murray 1989). In the last few years, these structures have been shown experimentally
to occur within starch-gels (Castets et al. 1990; Ouyang & Swinney 1991) which allow
the separation of diffusion constants necessary for a Turing structure.

Hexagonal patterns constitute an important subject of research in the theory of
Turing and convection structures (Ciliberto et al. 1988; De Kepper et al. 1994).
However, perfect hexagonal patterns are rather difficult to observe in large systems.
Typically, different line or point defects appear in the background of a hexagonal
pattern. Among point defects, the so called ‘penta-hepta’ defects, or pair of cells
with five and seven ridges, are the most typical. These defects, once having been
created, are very stable (Ciliberto et al. 1990) and they separate multiple domains
of hexagons having different orientations.

Arrays of nonlinear electronic circuits have been used to model reaction-diffusion
systems and autowave propagation (Mufiuzuri et al. 1993; Andronov et al. 1966;
Feingold et al. 1988). Among them, Chua’s circuit (Chua 1992; Madan 1993) has been
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proven to be a very useful tool that can exhibit a very large variety of behaviours
(see Muniuzuri et al. (1995) for a review).

Travelling, triggered or transition waves have been studied in one-dimensional
arrays of electronic circuits. The results have been used to simulate the mechanism
of propagation failure (Pérez-Mufiuzuri et al. 1992), as well as for image processing
applications (Pérez-Mutiuzuri et al. 1993).

More complex patterns in a two-dimensional medium have been found and studied
(Mufiuzuri et al. 1993). Structures like spiral waves and targets exhibit a periodic
behaviour in both space and time. Vortices are used to study the mechanism of their
initiation (vulnerability) (Gémez-Gesteira et al. 1994).

Stable stationary patterns, such as Turing patterns (Pérez-Munuzuri 1995), have
also been found in two-dimensional arrays of discreetly coupled circuits. The interac-
tion between these structures with an external forcing leads to a perfect organization
of the pattern into a rhombic array, which is generic of any reaction-diffusion system
undergoing a Turing bifurcation.

In this paper, we present a review of the structures and behaviours observed in
arrays of Chua’s circuits and some recently observed results and applications.

2. Model

The basic unit (cell) of our arrays is a Chua’s circuit (Chua 1992; Madan 1993).
The circuit contains three linear energy-storage elements (an inductor L, and two
capacitors Cy and C3), a linear resistor with resistance 1/G, and a nonlinear resistor,
Ng, called Chua’s diode. Each oscillator is coupled to its neighbours through linear
resistors, thereby simulating a diffusion process.

The dynamics of the array of Chua’s circuits can be modelled by a system of
third-order autonomous nonlinear differential equations. In particular, we consider
the dimensionless form of these equations (Munuzuri et al. 1995),

Tij = a(Yi; — M(®i5) + Dia(@ir; + @ic1,; — 225 5)
D1y (i g1 + @1 — 22i5),

Uig = Tij — Yij + 2ij) + Doz (Yiv1,5 + Yio15 — 2¥i 5)
+Doy (Yijr1 + Yij-1 — 2¥i5),

Zij = —BYij — V255 )

The dimensionless equation of the three-segment piecewise- linear characteristic
of the nonlinear resistor (Chua’s diode) is given by h(z) = ag + a1z + b1z — 21| +

bolz — @2| + €, where a1 = $(my + mg), by = (mo — my), by = L(my — my),
ag = bix — byxy and € accounts for the excitability of the system. We will choose
21 = —1 and 25 = (mg — my)/(mo — ma) so that the classical symmetrical situation

(Chua 1992) is recovered when me = my. In addition to (1), we impose zero-flux
boundary conditions. A uniform time step of 0.001 was used throughout as the
differential equations were integrated using an explicit Euler method.

The dimensionless parameters in (1) are related to the physical parameters by

o o 1 1
= =5 D Y= A ) D x = ) D Yy = Np
GRI.’L‘ ’ Y GRly % GRZ:I: 2 GRZ:(/
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where 7 is a small resistance introduced to account for the internal resistance of the
physical inductor coil used in our experiments. Gy, G; and G, denote the slopes of
the middle, left »nd right segments, respectively, of the nonlinear resistor Ng.

Note that two kinds of couplings are provided by two resistive grids made of resis-
tors Ry and Ry, respectively. They correspond to the two simplest methods to couple
each Chua’s circuit to its neighbours. We will henceforth refer to these two cou-
pling methods as coupling across nodes N; and Ns, respectively. Usually, we choose
Ry = Ry, = Ri, and Ry = Rs, = Ry, (for an isotropic two-dimensional medium).
However, they are also allowed to vary in the case of an anisotropic medium, or in a
one-dimensional medium (R, = Ry, = 00).

3. Spiral waves in two-dimensional grids

A grid of 101 x 101 oscillators was used in our numerical calculations. The model
parameters (Cy, Cy, ro, L, G1, G2, Gy, G) were assigned the values (1 nF, 10 nF,
50271 004H,1.1x100Q71,23x100Q7, —0.5x 100271, 0.9 x 10 Q71) for both the
excitable and the oscillating cases. The only difference between these two cases is
the value of the offset, e = 0 and e = 0.4, respectively (Muiuzuri et al. 1993).

In an excitable or oscillating medium, waves propagate through it without disrup-
tion. Under certain circumstances this wave can be broken giving rise to a pair of
free ends of the wave front that start propagating. This free end of the wave front
sprouts in a direction perpendicular to the motion of the wave: it curls and evolves
into a vortex.

To obtain a free end we have used the set of initial conditions described by
Munuzuri et al. (1993).

Figure 1 shows several snapshots depicting the dynamic process from the initial
pattern to a fully developed spiral wave. Here, only the x variable is shown for the
oscillating case. Figure la shows the initial conditions where all points inside the
‘wedge-like’ region correspond to the excited value in z (in this case z = —2.9,
corresponding to the fast part in the limit cycle) and all other points correspond to
an equilibrium value (slow part of the limit cycle). Observe that the tip of the wave
front in figure 1b begins to increase its curvature. This process is seen to continue
in figure lec, d, where the number of turns of the spiral increases until it reaches the
equilibrium. The configuration shown in figure le has reached a stationary state but
continued rotating steadily for 1000 time units (TU) as shown in figure 1f.

A spiral wave is the stationary pattern with the highest frequency that a medium
can spontaneously support. Once a spiral is created, all other structures such as target
waves (i.e. a train of concentric circular waves, generally created by an inhomogeneity
in the medium) will be swamped and eventually disappear. This is the mechanism in
the cardiac muscle. Here, concentric waves are generated in the atrial sinus (located
at the upper part of the heart) and propagate towards the opposite side as the muscle
contracts periodically (pumping the blood). If one of the wave front breaks in the
medium (by a vulnerability process, or other mechanisms) it will evolve into a pair of
spiral waves with a frequency higher than the pumping frequency and will annihilate

Phil. Trans. R. Soc. Lond. A (1995)
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_ i

Figure 1. Time snapshots showing the birth of a fully developed spiral wave. Figures (a)-(f)
correspond to 0, 10, 20, 50, 200 and 1000 time units (each time unit (TU) is equal to 0.105 ms in
real physical time). For ¢ = 0 the initial condition is shown. After ¢ = 1000, the spiral structure
remains while steadily rotating around the centre. In this case, the tip of the spiral follows a
circular pattern (called the core) with a typical diameter of five circuits. Black colour in all
figures corresponds to the minimum value of the = variable which, in this case, corresponds to
the value of excitation. The grey colour corresponds to the maximum value of the = variable;
namely, the resting state of the circuit.

any concentric waves created in the atrial sinus (this mechanism can, eventually,
lead to the death of the organism if the vortex is not eliminated from the medium).

4. Turing structures

(a) Conditions for Turing pattern formation

Turing patterns are those stationary structures that appear spontaneously upon
breaking the symmetry of the medium, and which resulted only from the coupling
between the reaction and the diffusion processes (which contradicts the general idea
that diffusion is a stabilizing process). In fact, these systems, in the absence of dif-
fusion, tend to a linearly stable uniform steady state. Once Turing patterns arise,
they remain stable until some external perturbation destroys them, but after that
perturbation stops, Turing structures reappear and reorganize themselves.

Here, we use a two-dimensional array of Chua’s circuits where each cell/unit is

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. Temporal spontaneous formation of hexagonal arrays. Note the different orientations
of the hexagon domains in (d) are separated by ‘penta-hepta’ defects. Size of the array: 100 x 100
and time of calculations: (a) 20 TU, (b) 70 TU, (¢) 120 TU, (d) 2000 TU. (D; = 1 and D3 = 40).
In all figures, the centre of the blobs corresponds to the maximum value of the x variable in
equation (1).

coupled to its four neighbours through resistors at its nodes N; and N» in equation
(1). Experimental realization of these arrays will allow us to modify most of the
parameters affecting Turing pattern formation, as well as to investigate long-range
behaviours.

The set of fixed parameters satisfying Turing conditions which we used in this
section is {«, 3, v, mg, my, ma, e} = {—10,1073,107%,~1,0.1,0.1,2}. A random ini-
tial condition was chosen for all variables in equation (1) so that z;; € [0.0,4.5],
yij € [1.0,1.3] and z; ; was kept constant and equal to —g,\ﬁ,j =1,...,N. Dy, and
Dy, were set to zero and D, = Dy and Dy, = Ds.

Figure 2a—d shows the temporal spontancous formation of hexagonal lattices char-
acterized by multiple domains, each of which contains a fairly uniform array with
different orientations. Observe that different domains are separated by ‘penta-hepta’
defects. These defects, once having been created at the beginning of the simulation
are very stable and remain motionless (figure 2d).

(b) Sidewall forcing of hexagonal Turing patterns

The effect of imposed spatial or temporal modulations on pattern-forming systems
has been analysed recently in various experimental and theoretical situations (Coullet
& Walgraef 1989; Cross & Hohenberg 1993).

On the other hand, although the effect of global spatial or temporal modulation
have been widely studied, little has been done on the effect of local forcing on Turing
structures. Periodic sidewall forcing on Turing patterns mimics the behaviour of the
boundary between two domains; one, where periodic wave trains propagate through
the medium and the other, where Turing structures are developing.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 3. Temporal evolution of a coexisting state of rhombi and hexagons. Those columns of
blobs at the left of the figure are periodically stretched and expanded giving rise during the first
few iterations to (a) rolls oriented along the left boundary and blobs that begin to develop far
from it. These patterns will eventually evolve into rhombi (first five columns of blobs at the left
of the figure), (b) and hexagons (last five columns), (c) separated from the rest by ‘penta-hepta’
defects. The parameters are: A, = 2, w = 0, D1 = 1, Dy = 39). Iteration times: (a) 50 TU, (b)
300 TuU, (c) 600 TU, (d) 2000 TU.

The periodic sidewall forcing to the system was modelled by adding the term
A, cos(wt)o(i — 1) (2)

to equation (1) for the z variable, where A, and w are the amplitude and frequency
of forcing, respectively, and §(-) is the Dirac’s delta which is equal to one when ¢ = 1
for any j € [1,n], and zero otherwise.

We have observed that when a periodic sidewall forcing is applied with the same
initial state which leads to figure 2, perfect organization into a rhombic array is
obtained. This state is characterized by wave vectors ki, ko and kj satisfying the
resonant condition that k; is perpendicular to the direction of forcing and |ks| =
|k3| # |k1|. Besides, it was found that perfect organization of rhombi occurs only for
specific values of Dy and D, and some forcing frequency w. Hence, we will assume
from now on that locking between the forcing frequency and D, (characterized by
some spatial frequency) occurs at some specific values of w and D,. This resonance
effect is manifested by a perfect organization of rhombi obeying the Farey sequence
(Pérez-Munuzuri et al. 1995).

The evolution process leading to a coexisting state of rhombi and hexagons is
shown in figure 3 at four different times. Observe that the first columns of blobs at
the left of the figures are periodically expanded and contracted due to the forcing.
From the first iterations, vertical stripes developed close to the left boundary while
disordered blobs appear far from it. When the pattern becomes stationary in time,
the stripes have developed into rhombi (they are detected by extracting this part
of the image and obtaining its Fourier transform) and hexagons (far from the left
boundary), separated by ‘penta-hepta’ defects.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 4. The rhombi stable pattern remains unchanged even after switching off the periodic
sidewall forcing. This pattern remained stable (no defects appeared) throughout the calculation
time period (50000 TU). The parameters are: A, =0, w =0, D1 =1 and D2 = 40.

Any stable pattern obtained by sidewall forcing remains stable upon switching
off the forcing (A, = 0), as well as to slight perturbations on the forcing parame-
ters, w and A,. For example, if after obtaining a perfectly organized rhombi (above
10000 tU), the forcing was suppressed (A, = 0 in equation (2)), we would find the
perfectly organized rhombi (figure 4) remained unchanged. The new pattern, without
forcing, remains stable over the remaining time duration (50 000 TU) of our computer
simulation. This result suggests the possibility of controlling spatial defects via tem-
porary sidewall forcings.

Rhombic arrays have been observed experimentally (Ouyang et al. 1993) and nu-
merically (Dufiet & Boissonade 1992) in reaction-diffusion systems under sponta-
neous conditions for values of control parameters chosen close to those for hexagonal
pattern formation (usually found with ‘penta-hepta’ defects).

(¢) Competition between Turing and Hopf modes

In view of the discrete nature of our system, it is quite reasonable to study the
interaction between different modes as well as to simulate inhomogeneities into the
system. Here we present the simulations of two layers of Chua’s circuits connected
with resistive connections between them at both nodes. Equivalent experimental
setups that are now currently used consist of a thin reacting layer, where the con-
centrations of the control species are fixed at the boundaries (Noszticzius et al. 1987;
Castets et al. 1990). In this case, transverse concentration gradients are induced in
the active medium, and may lead to the unfolding of the bifurcations and to the
spatial coexistence of spatio-temporal patterns of different symmetries where these
gradients can be considered as external forcing terms (Kramer et al. 1994).

In our simulations, each cell/unit is connected to its four nearest neighbours
through nodes N; and N, in the same layer and to one neighbour in the opposite
layer. The coupling between layers (D? and DY) induces in the system a character-
istic length which accounts for the ‘distance’ between layers. Thus, for example, by
increasing the coupling resistance between layers, the ‘distance’ between them in-
creases and the interaction between the structures arising in both layers diminishes.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 5. Interaction between Turing patterns and spiral waves. All images show the super-
position of the two layers corresponding to the Turing and the Hopf modes, respectively. As
the diffusion between layers is increased, from (a) to (d) (i.e. the distance between them is de-
creased), the period of the spiral wave increases and the size of the blobs decreases. Note that
the core of the spiral always coincides with a blob in the Turing layer. Parameters and grey scale
for the Turing patterns are as in figure 2, and for the spiral waves as in figure 1. The diffusion
coefficients between layers (D3 = 0.0) are: (a) DY = 0.02, (b) DY = 0.10, (¢) D} = 0.15, (d)
7 =0.25.

In this case, we study the interaction between Turing structures (Turing mode) and
vortices (Hopf mode). Parameters and initial conditions for spiral waves and Turing
patterns were chosen from those described above. Since the Turing pattern develops
faster than a spiral wave, we choose a fully developed vortex as initial condition for
the Hopf layer in order to study the interaction between the two modes.

Figure 5 shows the superposition of the patterns developing in the two layers
(hexagons and spiral waves) after 1000 Tu when the diffusion between layers, D?,
is increased for a constant value of D = 0. For small coupling coefficients the
dynamics of both layers is not affected, see for example figure 5a for DY = 0.02.
As we increase the diffusion coefficient D}, the period of the spiral waves increases
while the size of the blobs in the Turing layer decreases, as shown in figure 5b, ¢
(note that the wave length remains constant). Besides, the shape of the spiral waves
becomes more unstable, and the number of defects in the Turing layer increases.
Finally, for D} > 0.20 (figure 5d), the spiral breaks down. Above this value, Turing
and Hopf modes are mixed and they propagate in both layers. By increasing the
diffusion between layers, the Hopf mode (waves) dominates the entire system. In all
cases, it was observed that the tip of the spiral wave remained always anchored to a
blob of the hexagonal pattern.

5. Coexistence of low- and high-dimensional spatio-temporal chaos

A one-dimensional array of Chua’s circuit was used to investigate the appearance
of spatio-temporal chaos (Zheleznyak & Chua 1994). The set of fixed parameters we

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 6. Chaotic spatio-temporal pattern of the variable x for initial conditions (3) and
diffusion coefficient D1, = 0.4.

used in this section is {«, 3,7, mg, m1, ma, e} = {9,19,0, —%, ;?, —%,0}. To obtain
a one-dimensional medium Dy, D,, and D,, were set to zero in equation (1) and
Dy, was used as the bifurcation parameter. Periodic boundary conditions were used
through all the calculations: z1 = xny1, Y1 = Yni1, 21 = 2n4p1, With N > 1.

The parameters for an uncoupled Chua’s circuit were chosen so that it has two
stable limit cycles, symmetrical with respect to the origin. Despite the simple local
dynamics of the basic cell, the global behaviour of the system can be very compli-
cated. The dynamics were studied for two types of initial conditions. In the first

type,

z;(0) =14 0.1sin(27 (¢ — 1)/N), 3;(0) = z;(0) = 0.1, (3)
the trajectories of all cells are attracted to the same limit cycle. In the second type:
x;(0) =sin(2w (i — 1)/N), v;(0) = 2,(0) = 0.1, (4)

the trajectories of all cells belong to the basins of attractions of two different limit
cycles. The computations showed that for both types of initial conditions, the dy-
namics of the system have much in common. For weak coupling, the spatio-temporal
patterns in both cases are simple: weakly inhomogeneous in space and periodic in
time. When the diffusion coefficient D;, exceeds some critical value D.,, a pattern
occurs — so-called m-spatial oscillation — where almost all adjacent cells are 180°
out of phase. Increasing the diffusion coefficient Dy, further gives rise to envelope
waves against a background of m-oscillations and finally, when D, = 0.33, chaotic
spatio-temporal patterns appear. We can see that these patterns no longer exhibit
any regular structures in space and are chaotic (with broadband power spectrum)
in time. Chaotic spatio-temporal patterns were further studied (Zheleznyak & Chua
1994) based on a new approach for describing the properties of patterns through
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Figure 7. Result corresponding to figure 6 for initial condition (4).

the characteristics of associated attractors of a multidimensional dynamical system
with a matriz phase space. Using this approach it has been found that the attrac-
tors corresponding to the chaotic patterns for initial conditions (3) (figure 6) have
large correlation dimension (> 10), whereas for initial conditions (4) (figure 7) the
correlation dimension is low (< 5). Thus it is shown that in the matrix phase space
of CNNs, different high- and low-dimensional attractors coexist, corresponding to
different initial conditions.

6. Conclusions

Throughout this paper we have demonstrated how an array of Chua’s circuits
provides a very useful tool for studying spatio-temporal patterns. A medium com-
posed of diffusively coupled Chua’s circuits results in a discrete system that mimics
the behaviour observed in many natural systems; e.g. cardiac muscle, nerve fibres,
Belousov-Zhabotinsky reaction, etc. This electronic system (CNN) can be built and
controlled, because the parameters can be adjusted and measured with precision
(and hence, its results are easily reproducible).

The CNN architecture has been shown to be able to support a great variety of
solutions, as well as all known spatio-temporal structures observed from other (dis-
crete or continuous) systems; spatio-temporal chaotic regimes, spiral waves, Turing
patterns, interaction between Turing and Hopf modes.

Numerical calculations have been performed on the Vectorial Super Computer Fujitsu VP2400
at Centro de Supercomputacién de Galicia, CESGA (Galicia, Spain). This work was supported
in part by the Xunta de Galicia (Spain) under consecutive projects number XUGA20610B92
and XUGA20611B93, and by the USA Joint Services Electronics Program under contract no.
F49620-93-C-0014.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

OF

Downloaded from rsta.royalsocietypublishing.org

112 V. Pérez-Munuzuri and others

References

Allesie, M. A., Bonke, F. I. M. & Scopman, T. Y. G. 1973 Circus movement in rabbit atrial
muscle as a mechanism in tachycardia. Circulation Res. 33, 54-62.

Anderson, R. M. & May, R. M. 1986 The invasion, persistence and spread of infectious diseases
within animal and plant communities. Phil. Trans. R. Soc. Lond. B 314, 533-570.

Andronov, A. A., Vitt, E. A. & Chaikin, S. E. 1966 Theory of oscillators. Oxford: Pergamon.

Bures, J., Koroleva, V. I. & Gorelova, N. A. 1984 Leao’s spreading depression, an example of
diffusion-mediated propagation of excitation in the central nervous system. In Autowaves and
structures far from equilibrium (ed. V. I. Krinsky), pp. 180-183. Springer.

Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. 1990 Experimental evidence of a sustained
Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 2956.

Chua, L. O. 1992 The genesis of Chua’s circuits. Int. J. Electron. Commun. 46, 250-257.

Ciliberto, S., Pampaloni, E. & Pérez-Garcia, C. 1988 Competition between different symmetries
in convective patterns. Phys. Rev. Lett. 61, 1198-1201.

Ciliberto, S., Coullet, P., Lega, J., Pampaloni, E. & Pérez-Garcia, C. 1990 Defects in roll-hexagon
competition. Phys. Rev. Lett. 65, 2370-2373.

Cole, W. C., Picolne, J. B. & Sperelakis, N. 1988 Gap junction uncoupling and discontinuous
propagation in the heart. Biophys. J. 53, 809-818.

Coullet, P. & Walgraef, D. 1989 Spatial forcing of 2D wave patterns. Europhys. Lett. 10, 525-531.

Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. mod.
Phys. 65, 851-1112.

De Kepper, P., Perraud, J. J., Rudovics, B. & Dulos, E. 1994 Experimental study of stationary
Turing patterns and their interaction with traveling waves in a chemical system. Int. J. Bifurc.
Chaos 4, 1215-1231.

Devreotes, P. N., Potel, M. J. & MacKay, S. A. 1983 Quantitative analysis of cyclic amp waves
mediating aggregation in Dyctiostelium discoideum. Dewvel. Biol. 96, 405-415.

Dufiet, V. & Boissonade, J. 1992 Numerical studies of Turing patterns selection in a two-
dimensional system. Physica 188A, 158-171.

Ermentrout, G. B. & Cowan, J. 1979 A mathematical theory of visual hallucination patterns.
Biol. Cybern. 34, 137-150.

Feingold, M., Gonzélez, D. L., Piro, O. & Viturro, H. 1988 Phase locking, period doubling and
chaotic phenomena in externally driven excitable systems. Phys. Rev. A 37, 4060— 4063.

Glass, L. & Mackey, M. C. 1988 From clocks to chaos: the rhythms of life. Princeton University
Press.

Gémez-Gesteira, M., Fernéndez—Garcfa, G., Munuzuri, A. P., Pérez-Munuzuri, V., Krinsky, V.
I., Starmer, C. F. & Pérez-Villar, V. 1994 Vulnerability in excitable Belousov—Zhabotinsky
medium: from 1D to 2D. Physica 76D, 359-368.

Grekhova, M. T. 1981 Autowave processes in systems with diffusion. Gorki Acad. Sci. USSR.
Haken, H. 1983 Advanced synergetics. Springer.

Keener, J. P. 1987 Propagation and its failure in coupled systems of discrete excitable cells.
SIAM J. Appl. Math. 47, 556-572.

Kramer, L., Hynne, F., Sorenson, P. G. & Walgraef, D. 1994 The Ginzburg-Landau approach
to oscillatory media. Chaos 4, 443-452.

Krinsky, V. I. 1984 Autowaves: results, problems, outlooks. In Self-organization: autowaves and
structures far from equilibrium (ed. V. I. Krinsky), pp. 9-19. New York: Springer.

Laplante, J. P. & Erneux, T. 1992 Propagation failure in arrays of coupled bistable chemical
reactors. J. Phys. Chem. 96, 4931-4934.

Madan, R. N. (ed.) 1993 Chua’s circuit: a paradigm for chaos. World Scientific Series on Non-
linear Science, series B, vol. 1. Singapore: World Scientific.

Munuzuri, A. P., Pérez-Munuzuri, V., Pérez-Villar, V. & Chua, L. O. 1993 Spiral waves on a
2-D array of nonlinear circuits. IEEE Trans. Circuits Systems 40, 872-877.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

OF

Downloaded from rsta.royalsocietypublishing.org

Wawves, patterns and chaos in cellular neural networks 113

Munuzuri, A. P., Pérez-Munuzuri, V., Gémez-Gesteira, M., Chua, L. O. & Pérez-Villar, V. 1995
Spatio-temporal structures in discretely-coupled arrays of nonlinear circuits: a review. Int. J.
Bifurc. Chaos 5, 17-50.

Murray, J. D. 1989 Mathematical biology. New York: Springer.

Noszticzius, Z., Horsthemke, W., McCormick, W. D., Swinney, H. L. & Tam, W. Y. 1987 Sus-

tained chemical waves in an annular gel reactor: a chemical pinwheel. Nature, Lond. 329,
619-621.

Ouyang, Q. & Swinney, H. L. 1991 Transitions from a uniform state of hexagonal and striped
Turing patterns. Nature, Lond. 352, 610-612.

Ouyang, Q., Gunaratne, G. H. & Swinney, H. L. 1993 Rhombic patterns: broken hexagonal
symmetry. Chaos 3, 707-711.

Perez-Munuzuri, V., Aliev, R., Vasiev, V., Pérez-Villar, V. & Krinsky, V. I. 1991 Super-spiral
structures in an excitable medium. Nature, Lond. 353, 740-742.

Pérez-Munuzuri, V., Pérez-Villar, V. & Chua, L. O. 1992 Propagation failure in linear arrays of
Chua’s circuits. Int. J. Bifurc. Chaos 2, 403-406.

Pérez-Muiniuzuri, V., Pérez-Villar, V. & Chua, L. O. 1993 Autowaves for image processing on
a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths.
IEEE Trans. Circuits Systems 40, 174-181.

Pérez-Munuzuri, V., Gémez-Gesteira M., Muiiuzuri, A. P., Chua, L. O. & Pérez-Villar, V. 1995
Sidewall forcing of hexagonal Turing patterns: rhombic patterns. Physica 82D, 195-204.
Scott, A. C. 1975 The electrophysics of a nerve fiber. Rev. mod. Phys. 47, 487-533.

Spach, M. S., Miller, W. T., Geselowitz, D. B., Borr, R. C., Kootsey, J. M. & Johnson, E. A.
1981 The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for
recurrent discontinuities of intracellular resistence that affect the membrane currents. Circ.
Res. 48, 39-54.

Starmer, C. F., Biktashev, V. N., Romaksho, D. N.; Stepanov, M. N., Makarova, O. N. &
Krinsky, V. I. 1992 Vulnerability in excitable medium: analytical and numerical studies of
initiating unidirectional propagation. Biophys. J. 65, 1775-1787.

Turing, A. M. 1952 The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 327,
37-72.

Winfree, A. T. 1987 When time breaks down. Princeton University Press.

Zaikin, A. N. & Zhabotinskii, A. M. 1970 Concentration wave propagation in two-dimensional
liquid phase self-organizing system. Nature, Lond. 225, 535-537.

Zheleznyak, A. L. & Chua, L. O. 1994 Coexistence of low- and high-dimensional spatio-temporal
chaos in a chain of dissipatively coupled Chua’s circuit. Int. J. Bifurc. Chaos 4, 639-674.

Zykov, V. S. 1987 Simulation of wave processes in ezxcitable media. Manchester University Press.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsociety} I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

|—|-:
jl-
HI
—
—r
ot
-
-
-
—
el
—
e—
—
—
'
-
-
et
=
-
i
]
T
o ¥
—— |
=
L]
i
—
i b
J.
==
P
-
—
<
—
—
—_
:J-'H.
-
—
—_—
s
-~
1=
———
o’
&
=~
s
=
=
—
'
I—I-j
-
-
i, |
—_—
—
—
—
L
&
-
[re——
Ea]
(=
-
w
-~
L

loped spiral wave. Figures (a)-(f)
“orrespond to 0, 10, 20, 50, 200 and 1000 time units (each time unit (TU) is equal to 0.105 ms in
sal physical time). For ¢ = 0 the initial condition is shown. After t = 1000, the spiral structure
>mains while steadily rotating around the centre. In this case, the tip of the spiral follows a
ircular pattern (called the core) with a typical diameter of five circuits. Black colour in all
gures corresponds to the minimum value of the x variable which, in this case, corresponds to
he value of excitation. The grey colour corresponds to the maximum value of the x variable:
amely, the resting state of the circuit.
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igure 2. Temporal spontaneous formation of hexagonal arrays. Note the different orientations
“the hexagon domains in (d) are separated by ‘penta-hepta’ defects. Size of the array: 100 x 100

ad time of calculations: (a) 20 Tu, (b) 70 TU, (¢) 120 TU, (d) 2000 TU. (D1 = 1 and D2 = 40).

1 all figures, the centre of the blobs corresponds to the maximum value of the x variable in
juation (1).
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1;7111{1 3. Temporal evolution of a coexisting state of rhombi and hexagons. Those columns of
obs at the left of the figure are periodically stretched and expanded giving rise during the first
w iterations to (a) rolls oriented along the left boundary and blobs that begin to develop far
om it. These patterns will eventually evolve into rhombi (first five columns of blobs at the left
“the figure), (b) and hexagons (laql five columns), (¢) separated from the rest by ‘penta-hepta’
fects. The parameters are: A, = 2, w =0, Dy, = 1, D, = 39). Iteration times: (a) 50 TU, (b)
)0 TU, (¢) 600 TU, (d) 2000 TU.
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igure 4. The rhombi stable pattern remains unchanged even after switching off the periodic
dewall forcing. This pattern remained stable (no defects appeared) throughout the calculation
me period (50000 TU). The parameters are: A, =0, w =0, Dy = 1 and D2 = 40.
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~gure 5. Interaction between Turing patterns and spiral waves. All images show the super-
Osition of the two layers corresponding to the Turing and the Hopf modes, respectively. As
e diffusion between layers is increased, from (a) to (d) (i.e. the distance between them is de-
eased), the period of the spiral wave increases and the size of the blobs decreases. Note that
e core of the spiral always coincides with a blob in the Turing layer. Parameters and grey scale
r the Turing patterns are as in figure 2, and for the spiral waves as 1n figure 1. 'T'he diffusion
efficients between layers (D5 = 0.0) are: (a) Dy = 0.02, (b) Dy = 0.10, (¢) D; = 0.15, (d)
v = 0.285.
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6. Chaotic spatio-temporal pattern of the variable x for initial conditions (3) and
diffusion coefhcient Dy, = 0.4.
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Figure 7. Result corresponding to figure 6 for initial condition (4).
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